
会员
趣味魔方:一学就会的魔方秘笈
孙虹烨更新时间:2021-03-12 19:48:48
最新章节:附录B 三阶魔方花样玩法开会员,本书免费读 >
本书由《最强大脑》节目第二季和第三季人气选手、专业魔方教练孙虹烨倾力打造。永别了,复杂的魔方公式和口诀!若看完这本书还学不会魔方复原,就没人能帮你了!本书共三章:首先,讲述魔方的诞生、变化数及玩魔方的诸多好处;然后,详细叙述三阶魔方的入门玩法,即通过一个简单的手法进行魔方复原;最后,介绍三阶魔方的高级玩法,读者可在学会魔方复原的同时轻松提速。本书适合所有想学习魔方复原的人阅读。
上架时间:2021-02-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
趣味魔方:一学就会的魔方秘笈最新章节
查看全部- 附录B 三阶魔方花样玩法
- 附录A 学完三阶后可以无师自通的魔方
- 第五节 没有失误就是最快速度,观察快才是拼魔方的王道
- 第四节 提速小技巧
- 第三节 逆公式的运用
- 第二节 提速攻略——一条公式轻松提速60秒之顺三角换的应用
- 第一节 一分钟看懂魔方公式:不会看公式的Cuber不是好老师
- 第三章 三阶魔方轻松提速
- 第十一节 第八步:顶面棱块位置
- 第十节 第七步:顶面角块方向
孙虹烨
主页
最新上架
- 会员
圆锥曲线论
本书阐述了圆锥曲面的定义及利用圆锥曲面生成圆锥曲线的方法与构成,并对圆锥曲线的性质进行了研究。自然0字 - 会员
简明实用速算法:高位分段累加算术(第2版)
本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算自然1.6万字 - 会员
MATLAB科学计算从入门到精通
本书从MATLAB基础语法讲起,介绍了基于MATLAB函数的科学计算问题求解方法,实现了大量科学计算算法。全书分为三大部分。第1-2章对全书用到的MATLAB基础进行了简单介绍。第3-12章包括线性方程组求解、非线性方程求解、数值优化、数据插值、数据拟合与回归分析、数值积分、常微分方程求解、偏微分方程求解、概率统计计算及图像处理与信号处理等内容。第13-l5章以实际生活中的数学问题为例,将前文介绍自然7字 - 会员
开悟:数学黑客的生活之旅
数学来源于生活也高于生活,却高于生活太多到现代人无法触及。一方面,古代先哲和数学家们面对的生活问题已经不再是我们的生活问题,比如丈量土地和攻城掠寨;而我们要面对的锅瓦瓢盆,却是他们不曾想过的问题,比如地铁、找对象难题等。另一方面,数学已经发展到体系、宽度和深度都超越一般人想象力能达到的程度,不屑于解决我们普通人要面对的这种三瓜两枣的简单问题。但是,作为一个生活在现代社会中的正常人,我们每天要面对的自然11.7万字 - 会员
几何原本
本书先后论述了平面几何的基本原理、圆、比例论、相似图形、初等数论、简单立体几何以及正多面体等内容。书中每卷在一开始会给出定义、公设和公理,然后用这些定义和公理及证明过的命题,对各种几何图形的性质进行研究,展示了一套逻辑体系严密的几何学论证方法。自然29.4万字 - 会员
莱布尼兹微积分
本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先权争论期间为自己做出的申辩,从中可以了解他创建微积分的过程以及这场争论发生的部分缘由和过程。自然118字 - 会员
奇妙的数学:激发大脑潜能的经典名题(升级版)
在人类的历史长河中,数学家们总结发现过许多奇妙的数学问题,它们如夜空中的繁星,闪烁着熠熠星辉,体现了客观世界的规律之美、人类的智慧之美以及自然界的和谐之美。直到今天,这些经典的数学问题仍然受到大家的喜爱。阅读并思考这些问题,是启迪数学思维、培养兴趣爱好、拓宽知识视野的好方法。本书精选了32个专题,每个专题都以故事的形式分享了数学问题背后的历史故事及人物轶事,设置了同类的例题进行详细讲解,还精选了8自然9.4万字 - 会员
美妙的数学(插图珍藏版)
本书以数学实例揭示数学潜在的规律,同时探索用美学原理指导数学创造和发现的途径。内容包括:数,科学的语言;形,数的伴侣;数与形,相得益彰;曲线,大自然的写真;抽象,数学的灵魂;无穷,艰难的旅程。自然14字 - 会员
从零开始读懂微积分
本书通过一系列重要的数学地标,梳理了微积分理论,既包含课堂上没讲授的数学通识内容,又包含对一些复杂知识点的细致拆解,还包含微积分在现实生活中的应用,帮助读者开阔数学视野、提高数学思维、加深对数学的理解。全书共分为四篇:第一篇为读者构建数学学习的理念和方法;第二篇解释高等数学何以称为高等、大学数学内容与中学数学内容相比是否存在一个明确的分水岭等问题,为微积分的引入做好铺垫;第三篇借助“局部-整体原则自然11.5万字