会员
TensorFlow知识图谱实战
王晓华更新时间:2022-07-27 17:23:22
最新章节:13.3 本章小结开会员,本书免费读 >
大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的“喂养”下,大量知识不断涌现,如何有效地发掘这些知识呢?知识图谱横空出世。本书是一本讲解如何使用TensorFlow2构建知识图谱的入门教程,引导读者掌握基于深度学习的知识图谱构建概念、理论和方法。本书分为13章:第1章从搭建环境开始,包含TensorFlowCPU版本和GPU版本的安装,并通过一个知识图谱的例子引导读者开始学习;第2~4章介绍TensorFlowAPI的使用;第5章是DatasetAPI,学习使用原生API处理数据的方法;第6~8章是实战准备部分,介绍ResNet模型、词嵌入(wordembedding)模型、情感分类;第9~10章在“注意力模型”基础上搭建了“编码器模型”;第11~13章搭建了知识图谱联合抽取模型,利用本书所学知识实战知识图谱的搭建过程和性能提升方案。本书内容详尽、示例丰富,适合作为知识图谱和深度学习读者的参考书,同时也适合开设人工智能专业的大中专院校师生阅读,还可作为高等院校计算机及相关专业教材使用。
品牌:清华大学
上架时间:2021-11-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
TensorFlow知识图谱实战最新章节
查看全部- 13.3 本章小结
- 13.2.3 使用Mixture-of-Experts修正联合抽取模型
- 13.2.2 更换损失函数进行提升
- 13.2.1 更换预训练模型进行提升
- 13.2 知识图谱模型提升
- 13.1.4 第三步:联合抽取模型的训练
- 13.1.3 第二步:模型的设计
- 13.1.2 第一步:数据的处理
- 13.1.1 什么是联合抽取
- 13.1 基于联合抽取的知识图谱模型实战
王晓华
主页
同类热门书
最新上架
- 会员
巧用ChatGPT进行数据分析与挖掘
这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心内容的角计算机16.9万字 - 会员
MindSpore大语言模型实战
随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字 - 会员
被算法操控的生活:重新定义精准广告、大数据和AI
这是一个“算法世界”:建立在数据之上的算法指导社会的运行、决定我们能在网上看到什么;它更是自动驾驶、智能管家、未来医疗以至智慧城市的基石。如果我们不了解算法如何使用数据,就无法知道人工智能将如何改变我们的生活。通过采访谷歌和剑桥分析公司的数据专家、亲自模拟高科技巨头的算法模型,萨普特带我们直击智能产品背后的秘密、思考数字科技给社会带来的风险。我们对科技和互联网的日益依赖,使数据研究者能够收集与我们计算机14.8万字 - 会员
AIGC辅助数据分析与数据化运营:场景化解决方案与案例分析
这是一本能从业务、方法、场景3个维度帮助读者使用AI技术提升数据分析和数据化运营能力的著作。用扎实的理论框架、丰富的实践案例、实用的操作技巧,全面展示了如何用AI延伸业务分析广度、拓展业务分析深度、优化业务分析效能,从而达到帮助企业用智能的数据化运营实现业务持续增长的目的。本书采用案例驱动的写作方式,通过实际业务案例详细拆解AI技术在各个场景中的应用步骤和技巧。语言简洁易懂,理论与实践结合,注重实计算机17.2万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
自动驾驶:人工智能理论与实践
本书参照产业界自动驾驶技术研发的基本流程,充分借鉴了产业界在自动驾驶技术领域中的实际研发经验,以高性能的智能小车和高度仿真的车道沙盘为实验教具和运行环境,深入浅出地讲解自动驾驶技术的原理与实际应用,为初学者打开一扇通往人工智能世界的大门。本书以帮助初学者如何从无到有地打造出具备自动驾驶功能的智能小车为主线,内容分为看车(了解自动驾驶)、造车(设计智能小车)、开车(收集训练数据)、写车(编写自动驾驶计算机14.9万字 - 会员
机器学习
机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算计算机22.7万字 - 会员
人工智能对北京市就业的影响与应对
人工智能作为数字经济及高精尖产业发展的原创性、引领性和代表性技术,在北京国际科技创新中心、全球数字经济标杆城市的建设中迎来了发展的“关键窗口期”和“政策红利期”,成为北京高质量发展的重要引擎和打造高质量就业“北京样板”的重大机遇。本书是一部经济学学术专著,书稿导向积极。本书采用多元数据来源,运用案例研究法、舆情分析与大数据分析法等多种研究方法,从产业与就业动态匹配视角,聚焦人工智能对北京市就业的影计算机25.6万字