
会员
基于机器学习的个性化推荐算法及应用
刘超慧 李玲玲更新时间:2024-09-05 17:17:34
最新章节:参考文献开会员,本书免费读 >
个性化推荐作为一种重要的信息过滤技术,广泛应用于电子商务、社交服务以及基于位置的服务等领域,随着数据量的爆炸式增长,原有的推荐算法存在执行效率低和数据稀疏性等问题。为了解决原有推荐算法存在的问题,本书提出了3种新的算法,分别是基于三维项集矩阵和向量的频繁项集挖掘算法、融合惩罚因子和时间权重的协同过滤算法以及基于用户属性和项目评分的协同过滤算法,并介绍了一个个性化图书推荐原型系统的构建方案。本书结构清晰、文字流畅,适合对机器学习、个性化推荐感兴趣的读者阅读。
品牌:人邮图书
上架时间:2024-07-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
基于机器学习的个性化推荐算法及应用最新章节
查看全部- 参考文献
- 8.2 研究展望
- 8.1 研究总结
- 第8章 总结与展望
- 7.5 小结
- 7.4.5 用户评分历史模块
- 7.4.4 图书评价模块
- 7.4.3 个性化图书推荐模块
- 7.4.2 图书分类模块
- 7.4.1 热门图书模块
刘超慧 李玲玲
主页
最新上架
- 会员
AI训练师手册:算法与模型训练从入门到精通
本书共有10章,包括51个实操案例解析和80个行业案例分析。书中内容从技能线和案例线展开介绍。技能线:从人工智能的相关技术入手,不仅介绍了AI训练师的发展历程和行业动态,还重点讲述了AI训练师的职业技能提升方法。案例线:不仅涵盖了AI领域的各个方面,而且非常注重算法与模型的实际应用,通过分析大量的经典案例,可以让读者更好地掌握AI训练的相关技能。计算机11.6万字 - 会员
AIGC提示工程师精进之道
本书是一本关于AIGC提示工程师的实用指南,讲解了成为优秀AIGC提示工程师所需的技术特长和知识、沟通和协作能力、持续学习和自我提升方法等。本书分为3篇,共13章。第1篇为AIGC提示工程师基础,内容包括AI崛起下的新职业──AIGC提示工程师、设计高效提示的基本原则、常用的提示方法以及提示工程实践中的常见问题等;第2篇为提示进阶技巧,内容包括优化提示的除错过程、解决复杂问题的高级提示技巧、提升提计算机12万字 - 会员
巧用ChatGPT快速提高职场晋升力
本书共分为10章,从ChatGPT的基本知识、技术原理和应用场景出发,探讨了如何运用ChatGPT提升职场竞争力。计算机11.4万字 - 会员
AI智能写作:巧用AI大模型让新媒体变现插上翅膀
本书共分为8章,分别讲解了常见的人工智能以及人工智能影响下的广告流量变现、商业合作变现、直播变现、私域变现和IP变现等。此外,还对未来的人工智能与新媒体变现做了趋势分析。计算机10.5万字 - 会员
如何教人工智能说人话?
AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字 - 会员
法律人AI指南:大模型10倍提升工作效率的方法与技巧
本书系统地探讨了人工智能对法律行业的深远影响、法律人应该掌握的AI知识以及相关的法律AI工具。本书共14章,分为五部分。第一部分(第1章)介绍了大模型的基础知识以及AI在法律领域的应用趋势和场景,并深入探讨了AI对法律行业带来的影响等。第二部分(第2~6章)针对法律人的主要工作任务,包括类案检索、案情分析、法律咨询、法律文书写作、合同审查等,详细讲解了应该如何使用AI来提升工作效率。第三部分(第7计算机23.8万字 - 会员
大模型工程化:AI驱动下的数据体系
大模型在众多领域得到了广泛应用,促进了AI技术的整合和创新。然而,在实际应用过程中,直接将大模型应用于特定行业常常难以达到预期效果。本书详细阐述如何在游戏经营分析场景中利用大模型实现数据体系的建设。本书分为6个部分,共16章。第1部分主要介绍大模型技术的发展与应用,从大模型的发展现状展开,重点介绍大模型与数据体系的相关知识。第2部分主要介绍大模型下的关键基础设施,涵盖湖仓一体引擎、湖仓的关键技术、计算机15.6万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字