![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.3 光纤[21],[58],[59],[63],[65],[67],[68]
前面对平板介质波导和矩形介质波导进行了分析。这里将对广泛应用于远距离、大容量通信的光纤进行分析。通常光纤是一种圆柱形的波导,按照其折射率的径向变化可分为阶跃光纤、渐变折射率光纤等。还有一些特殊的光纤,例如双折射光纤、椭圆光纤、蝴蝶结光纤等。本节将简单介绍阶跃光纤的电磁场理论。
5.3.1 导模与本征方程
由于光纤具有圆柱形结构,采用柱坐标系讨论比较方便。设光纤的轴沿z轴方向,纤芯半径为a,折射率为n1,包层折射率为n2,如图5.3-1所示。
在柱坐标系中,电磁波的电场强度E和磁场强度H分别表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0011.jpg?sign=1738851454-RZye0j5Mry3yyx8D4JXotsxJwcW37A3s-0-1d9dfd137f55537ffe64c95ba3c6d13e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0012.jpg?sign=1738851454-G5mdgTdTbWxZWGsZ7WBOekr5fyJdu2Qb-0-9b11e60298666958a0e71c7f2ecd7651)
设时谐电磁波沿z轴传播,则光场各分量与坐标z、时间t相关的因子可以写成expi[ (βz-ωt)],将该因子代入柱坐标系中麦克斯韦方程的两个旋度方程可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0013.jpg?sign=1738851454-iDmyet3vW7YC5MDHfauReT5Kctum6wNz-0-14e6918a6227cd32ffdcddd092b53a72)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0001.jpg?sign=1738851454-Tm9B7pIpPOh3GD67a2o1f0gxGrZTEQ9y-0-6855c629cd791efb3ce74eaf258365fb)
图5.3-1 光纤的柱坐标系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0002.jpg?sign=1738851454-yMTeJM44HzJlL4WKqCbaSyBNpGPzB9TL-0-0c74c183956a553ebbf5b430197f4c1b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0003.jpg?sign=1738851454-XwyZY58ff4oF0VpbgndtUKjjFKbe0uyz-0-05b24901f3e61691e5c09c26e953e61e)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0004.jpg?sign=1738851454-0effTu6OQ7GWJ5r1Yr30u6ImtQjjUgnk-0-2ae78ebebd17f5070c76da7ac4ddcda7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0005.jpg?sign=1738851454-DUfqapYEb1XrMwq8zQ7hDnV8ahCiGEPv-0-fe2895bed6339a9f010a7f9ac93b962f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0006.jpg?sign=1738851454-gNfVSkLoafB06KIJcmJBfuTM5eXfq9GQ-0-34928683a8e5270c5f0f6bdd4a48b853)
如果介质中没有自由电荷与传导电流,Ez、Hz满足标量亥姆霍兹方程,在柱坐标系中可以写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0007.jpg?sign=1738851454-jhROoOjZomUkDbQGJkFbjcN4NQtFs40w-0-c643070c11220e06d299211c5b676f82)
式中,ψ表示Ez或Hz。
采用分离变量法求解方程(5.3-4),设试探解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0008.jpg?sign=1738851454-U1rDpJS21ju4DiBVCwU2jVIH1eNQRizU-0-ea064f8376852f6661c866841e74ba64)
其中,m=0,1,2,3,…,将上式代入式(5.3-4)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0009.jpg?sign=1738851454-2Lu6pj6aFnpPeCghel20ycrL2kzVLFCR-0-ba68b569ae43e705aff8b95eca6ef80d)
方程(5.3-6)是贝塞尔方程。令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0010.jpg?sign=1738851454-p4JowfPMUyWBBmWB4vhRwwpFEQ7Y6Bqu-0-01b0684dd13b236260e01ca231cbaf44)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0011.jpg?sign=1738851454-BCMmWQuvg0FEVvdYbpPSD9BjPtTzOs3q-0-84a7404802d5d017c795a8f9bc5503cd)
则在芯层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0012.jpg?sign=1738851454-fQOzqdxqsuV95YVuvc7vpUQIyY0lQtVq-0-91f2c61e7c264fe5b49a0cbda77f30e7)
在包层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0013.jpg?sign=1738851454-pe0KizIIKrf00Hujr93vPzDje0jLXeIM-0-21bd336f1ed2f23af316ebca3e0435bb)
考虑到在光纤中传播的电磁场必须满足:当r<a时,E(r)有限;当r>a时,E(r)趋于0。因此可以取的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0014.jpg?sign=1738851454-BXzhVTWc0EfRxYbEuO3yJUY9MzYi4T45-0-fcc2a33778f624827b237a81a24b7163)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0015.jpg?sign=1738851454-Ay9fI99iM3vFiUjAJRbJwotGDR3X1nVl-0-82c215599a5e7396d12f0a0b32d394c7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0001.jpg?sign=1738851454-MUJlR3qgvGr9fMCRJjiDMUWN8H2aRh99-0-de5f098c2c6dde820b2f4c97c744caa3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0002.jpg?sign=1738851454-mqrc5nFF4jjZjiX9IPpkfLY531pTxUpa-0-e67bf1e0700f70ccbfe38ce65db83bee)
式中,。令Ua=U/a,Wa=W/a,Ua、Wa分别代表光纤芯内的横向相位常数和包层内的衰减系数。Jm,Km分别为第一类贝塞尔函数和第二类修正贝塞尔函数(汉克尔函数),图5.3-2(a)所示为几个低阶的第一类贝塞尔函数曲线,图5.3-2(b)所示为几个低阶的第二类修正贝塞尔函数曲线。
在芯层与包层的边界处,电场和磁场的切向分量连续,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0004.jpg?sign=1738851454-IjDqdKHP9g67NQgtUdjzmAjYlelFEh7r-0-3f40f4cf4a607adb0eb4729ae14a6fa0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0005.jpg?sign=1738851454-AeapfzAJ7GeTl1qcwGipHCAyCxJSElOQ-0-94a2e374667b80a93513efdf922b0d1b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0006.jpg?sign=1738851454-cXp97GBX1VZI3GITyWobPROfbVNCQiJV-0-1c97940f5fe7d32fb0bc18fbfe760dd2)
图5.3-2 两种贝塞尔函数曲线
将式(5.3-9)代入式(5.3-10),得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0007.jpg?sign=1738851454-Ejr0UlIsAjOWa1YporhlztENU1vbH49x-0-9f8cd66787ba192221c0c1f73fba9d4d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0008.jpg?sign=1738851454-6mpi2R7tK4CrykU8GlF39HfNQhgLJO31-0-55e303f128011556e7397e6badf7e2a3)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0009.jpg?sign=1738851454-bAGcmAwmXDyxsKKU0wH3Ml1xEQq72EMH-0-62614a22ce6323563fd7ba6c219c3e4b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0010.jpg?sign=1738851454-hGiXln6m5tMI6gMDRQs86nwHJ3r2heH6-0-2a08535bb1616d56545e872a02e4b9f7)
这样,可以将纵向电场分量和纵向磁场分量表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0001.jpg?sign=1738851454-VSbw6Moht3UVwFAOPxoRDtOkwJxzDQfH-0-817bf77a4cd6ead09b0ef968c9df713f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0002.jpg?sign=1738851454-mgEZXAU8PK7F0fmSCjXOcscGKHvYhuEa-0-412eba26afb8ea7c21d40938049721b3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0003.jpg?sign=1738851454-GNv7NLJw2ftYSrRY41muQNe8ssvwCXaa-0-cafec17cceb2971c97553f716a24fee5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0004.jpg?sign=1738851454-zBIC3lfUem9qQmwmnXrJjoe8OPnbLAS3-0-2c8fe4ce265f2e69a8ea4193aabd1ded)
上面表示中略写了各项共同因子exp i[ (βz+mθ-ωt)]。求出纵向分量Ez、Hz 后,就可根据式(5.3-2)和式(5.3-3)求出其他横向分量,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0005.jpg?sign=1738851454-RViKml1ahOp5QmaIp3zyRlWeWH7FnWJb-0-53075e0dc65bd634d7840e24ea658ac2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0006.jpg?sign=1738851454-GmM2H3bs4eOBIgCYosgxuM0KWmWGaClC-0-40f3301b76f5604407baf4b0a138171e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0007.jpg?sign=1738851454-LKduNSNBc5sKPX5Vh8z4EkkWgvxUTSdZ-0-c81c41e77ff218a4d492bfd8f53fc2b0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0008.jpg?sign=1738851454-6PojOyB1vhetxCX2JibsF4SY5vt4jslj-0-f96d95d0f59e51073fa3dee49da08b20)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0009.jpg?sign=1738851454-uPLy3S1mq90PTjNVPIwvTFxtHDkB4dP6-0-18f555d36fac11a080496865072d259d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0010.jpg?sign=1738851454-z7dZ612oBiKVox0Vg9JXmW46BMVOVQXT-0-7a0a7b20510a31daf33de3f6dc13fa5a)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0011.jpg?sign=1738851454-d9z180kQBQFKgnADeYQlj03OUZElqaGZ-0-86dab1c1f73e0d5bab06d03dd79bba6e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0012.jpg?sign=1738851454-EsVL82lxrlPCDypj3vDvWOresCo1Xr0j-0-9810357bb62e886de669b501f6db38c7)
将式(5.3-13)各式分别代入式(5.3-14)中对应式,得到电场和磁场的横向分量,依次写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0013.jpg?sign=1738851454-s8RVPIKYKr1vhSppJiAWdkH3dtkrMT9p-0-5184e1ab5a2f7cc95d160a9daa47e57b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0014.jpg?sign=1738851454-UARkpCa0LA4QWJoyUUJZxkE4pgaZelfA-0-291ae0bd01aa8309644ce37412e92ed7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0015.jpg?sign=1738851454-YBSinAI3PxF2vTPTGHCVqNF3knCSyq1g-0-a9164cd29eee9d1a96ccdcea73c29ceb)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0016.jpg?sign=1738851454-yAbMFqbCXEJCKAvIKI8V0trw3vpmVct8-0-db1c83a0e35072b429823482c6cfbdeb)
以及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0017.jpg?sign=1738851454-Sz5zFrbbvVYSrOlC4PetsZxSMDklxJmu-0-61985b64a58ee2cce9890fc43e920e9d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0001.jpg?sign=1738851454-STjDA8A2qvNOwlHbeMxALz4cMezMoEf7-0-a42fbec4c04867354175694049619bda)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0002.jpg?sign=1738851454-ZsDJ0Od2hKCSSOtHvByi9FfbwcwrATQK-0-864296b7e990b8369dfb9a99aca79cd8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0003.jpg?sign=1738851454-AjLVOH3oYFqyofe00Wxl4w50p2CGV1PF-0-6fc682604d3ceb612e0749cde4a7296c)
式中,J、K上面的“·”号表示对r的一阶导数。利用纤芯和包层界面处电磁场连续的边界条件,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0004.jpg?sign=1738851454-gQuYWKIdjmsKuZt2u14QO7CeHNp1HRAl-0-9d90e0141b2be08da2b2e4ce230645af)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0005.jpg?sign=1738851454-Dn51vVlFD8Z6gjVQ1Ta7wzu7LgjD961Q-0-d6007c979cf29463c4ca698c10cbec6f)
将式(5.3-15c)、式(5.3-15d)代入式(5.3-17a),以及将式(5.3-16c)、式(5.3-16d)代入式(5.3-17b)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0006.jpg?sign=1738851454-AOm6G8Uy0HYhvWTzDOlrDdd3G7Hmvfyn-0-83fa5f214eb9da6bee7816d51249d93f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0007.jpg?sign=1738851454-elEldndlctI9ZI1Y8M1gMy4SaYzjiByh-0-243a6e0fed857313602424c0fb76e37b)
注意,式(5.3-18a)与式(5.3-18b)右边相等,经过整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0008.jpg?sign=1738851454-hqYScZBOmPPKNYt1Gxb6Rr0HFfcOSdym-0-7992461b7df44657e64999e80629bcad)
上式即为光纤的本征方程,式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0009.jpg?sign=1738851454-eTUXaU4faxATHTimUuuSn9rD33av5xWy-0-4c88dbfb5f4e6b10a05be1ea494b24a5)
V称为归一化频率。式(5.3-20)中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0010.jpg?sign=1738851454-oKm5YNaodLMuiFjkwWikTQlHLrBgXsTH-0-c5cbfed1eb10821fae9a6ec67a733dac)
将式(5.3-19)与式(5.3-20)联立,可以求出在一定波导结构和波长情况下U、W、β各参量。在弱导条件下,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0011.jpg?sign=1738851454-aBCV80ePiemcxKR6LDpOPZ7pda0ctd2I-0-d1dbfe066d335ffb0b8a51d33862607b)
式(5.3-19)可以化简为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0012.jpg?sign=1738851454-SSgKGntjTNJkMCAzQBRJ241MyF7woX05-0-5008b7b90abeffd03e3ed43fd32badd5)
式中,m=0,1,2,3,…。
5.3.2 导模的分类
光纤中的导模包括TE模、TM模、EH模和HE模,下面依次简单介绍。
1.TE模和TM模
TE模对应于纵向电场Ez=0的电磁场模式。根据Ez表达式可知,对TE模有A=0,进一步可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0013.jpg?sign=1738851454-fEuJH1UymMiZNC4hyFPTKXJc1OaPFLWT-0-a2d52993332553b38705eb6ad16d2b2f)
由于B、β、U、W均不为零,因此上式成立的条件为m=0。此时,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0001.jpg?sign=1738851454-8396AHxTYHkReFLg9UJDTiZg57lR9Knz-0-2a01c6382ef41e7df3d165bd5b9a5f07)
上式为TE模的本征方程。利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0002.jpg?sign=1738851454-dsEuwZBM88Ogm9YXLHNZEMoKESid4OAe-0-0b097af0e49716bbfd9fa3fa66379686)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0003.jpg?sign=1738851454-66789wLv7JvN7pLhb8dHDOGmZD79TYHi-0-5cca8b2b3ba67d6c82d9cceb8e124e13)
可以将式(5.3-25)表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0004.jpg?sign=1738851454-oftYg9yIJ9vcDu37H3K5ofaLQu2ZMqRk-0-3c1d64d0fc685d716f1f79ed78a2c876)
TM模对应于纵向磁场Hz=0的电磁场模式。由Hz的表达式可知,对TM模,有B=0,类似分析可得m=0。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0005.jpg?sign=1738851454-MU1Vb9lIr3KCSlxh7vz0fyXqg3grs3Sg-0-677f37cd79b202853592bd7759ae9abf)
上式为TM模的本征方程。
2.EH模和HE模
当m≠0时,A、B都不为零,表明Ez、H z将同时存在,不存在单独的TE模、T M模。这种Ez、H z同时存在的模式称为混合模,其中当Ez起主导作用时,称为EH模;当H z起主导作用时,称为HE模。
在弱导条件下,EH模和HE模的本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0006.jpg?sign=1738851454-R2vymriDj2liggNrfCSxYcOJ3jUExWgT-0-c0f1c63f923e4269b4440cbc8908ba2f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0007.jpg?sign=1738851454-gJw7GNFv6doW0KDnikfmt5FUvdohjl7e-0-6f0ff414c200628943cbd7a6874bcb89)
利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0008.jpg?sign=1738851454-p2yAW5WjkCho7uatnudagcehzcUbvEln-0-5a73e795511853b61f0835461d1b10af)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0009.jpg?sign=1738851454-yCrX5RrmBHuoCta69Nj4g6zlWSvAth5F-0-7cabec88e12ae034d1481c464970f870)
化简后得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0010.jpg?sign=1738851454-a34UqNuPHv5796vj5Z7ZcCeBLc45JNlj-0-d33f5ef6c5c7e6f719c10319fecc2468)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0011.jpg?sign=1738851454-h0gpQR8d2mfI4CTFxJRq4YrQyHUtJlaN-0-1aede45a010140b666938ccaa269b616)
5.3.3 导模的截止条件和截止波长
1.导模的截止条件
当导模在波导中传播时,主要能量集中在波导芯层,沿纵向无衰减传播,U、W参量均为正数,导模场在芯层为振荡函数,由贝塞尔函数描写;而在包层中,导模场为指数衰减函数,由汉克尔函数描写。
U、W参量均为正数的条件为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0012.jpg?sign=1738851454-yJgq5BWIwwEMx5QqNIgQ0Ga2Y5c5KFOi-0-e1131b5e96abbc5f6a6d54236a4e280a)
如果,则W2<0,包层中场量的解变成振荡解,即出现辐射模,导致光场能量不能集中在波导芯层传播而截止。W=0为导模与辐射模的临界情况。因此截止条件为W=0,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0014.jpg?sign=1738851454-PQOHPc822OxCnc7RuP5ovs6aBsgyA0sr-0-6e954c8c447fcb79eea54aa452504da6)
归一化频率Vc满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0001.jpg?sign=1738851454-0GM8GM7fnE4LVtPgSYCmVprYfzfp3d8M-0-cef16834dffa6ff9565cca4bf927a303)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0002.jpg?sign=1738851454-svzIcSAHmUMrg94R3v4oN4P1Jqf9JmIm-0-1820734423d2455d1c56500cccba7f23)
通过本征方程求得Uc,进而确定Vc,最后获得各种模式的截止频率。
2.TE0n模和TM0n模的截止波长
对于TE0n模和TM0n模,因为m=0,所以式(5.3-19)变为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0003.jpg?sign=1738851454-nSgBtertYr6izjP2GNZtFYACHQKQZ1Js-0-f03fdea3c21def638d5d038f53ccace8)
等号左侧前后两个因式为零分别对应于TE0n模和TM0n模。当W→0时,式(5.3-36)要求J0(U)=0,这就是TE0n模和TM0n模的截止条件。因为J0(U)是个振荡函数,它有许多根,不同的根对应不同阶模的截止条件。当n=1时,U01=2.41(U01的下标01表示零阶贝塞尔函数的第一个根),说明当纤芯半径a满足方程U01≤2.41时,TE01模和TM01模就因为截止而不存在了。对于更高阶的模,即n=2,3,4,…可以依次类推。截止时,归一化频率为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0004.jpg?sign=1738851454-IzVnM3HrzV5uCQZdKS3XBAv1WQ2n0NtE-0-3345ee4ddba5b0b0e5e1ef1fe3a70932)
当n=1时,对应的模TE01和TM01的归一化截止频率最低。由于U01=2.405,可得TE01(或TM01)模的截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0005.jpg?sign=1738851454-pCw9EaYVmfLrgeH0G7h81gFm6t6QlNpu-0-de32ffbff786cbe8d14e403d1eb0a17e)
当光纤的其他参量一定时,若λ≥λc,则相应的模式不能在波导中传播。
3.HE mn模的截止波长
截止时,W=0。根据HE模的本征方程,当W→0时,式(5.3-31b)右边的渐进特性应区分为m=1与m≥2两种情况。下面就这两种情况进行讨论。
1)HE1n模
当m=1时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0006.jpg?sign=1738851454-1UxwrETVBPetO2klhXOllW278dR9bIqj-0-f51392a011b842109b09eec5cf7d0e8e)
因此,当m=1时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0007.jpg?sign=1738851454-FF4GxGE5phifO9rOB3WaWaRwcorXOhJk-0-ec71bda70b7f219e78481bfea1fe9c7b)
其解为Uc=0和J1(Uc)=0的根Uc=u1l,u1l表示一阶贝塞尔函数的第l个根。但Uc=0是否应舍弃需要进一步考察。因为当U→0时,J0(U)→1,因此是本征方程W→0时的解,应该保留。这样得HE1n模的截止参数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0008.jpg?sign=1738851454-DS5tgaU8mWiWZidDtze9K83shguOs8Zh-0-633914a7454231241160b9f4b47da218)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0009.jpg?sign=1738851454-kqlyBW2nPBE0iiJmKUEaqvNGoxqhOeaO-0-66ed869b7e2126244899f73593835c43)
当n=1时,U11=0,对应的截止波长λc(HE11)=∞。说明HE11模没有截止限制,所以称为光波导中的优势模(即该模总是存在的)。
2)HEmn(m≥2)模
当m≥2时,Km(W)的渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0001.jpg?sign=1738851454-VYLERdZCnsyEmelzjtVOwt2y7HueKovx-0-6f108cde82644954a6574b325347c137)
利用贝塞尔函数递推关系
2mJm(U)=UJm-1(U)+UJm+1(U)
将式中阶数降1,即m→m-1,得
2(m-1)Jm-1(U)=UJm-2(U)+UJm(U)
因此当m≥2时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0002.jpg?sign=1738851454-v48pxXhxi7FS1FS5BOvj1edWYOIhlJuN-0-b73f84880d38a167cdc3eb81eec83ee6)
于是当m≥2时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0003.jpg?sign=1738851454-jFQJBYgMMldDZyNE6aJs6d0M877g9sLE-0-3de587e39d0dba3f5aec6aaeaaa41ecf)
上式的解为m-2阶贝塞尔函数的根,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0004.jpg?sign=1738851454-Gz6QMGtJuy8LShkcYqfphPkB5EzufqGB-0-8b33cd850290e78156eae412eeb01d3a)
对HE21模,U01=2.405,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0005.jpg?sign=1738851454-xqX2PANMLYR63BVMxQru31kMRiJsoe8l-0-3baff15e0633c639d4cfe2de492ba67e)
容易验证,HE2n模与TE0n模、TM0n模具有相同的截止波长,它们是简并模。
4.EH mn(m≥1)模的截止条件
根据EH模的本征方程(5.3-31a),当W→0时,该式右边的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0006.jpg?sign=1738851454-18PzVcyLIYDLwPKqZ58c1iX5Nu4LqudR-0-fbb9249026c38144686be3444595082a)
因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0007.jpg?sign=1738851454-DPFO19UTDFyTequEBE6gpVXodcWWzyRM-0-6d71d412a6fbb6ee0b347398aedb29c5)
注意到当Uc→0时,上式的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0008.jpg?sign=1738851454-eR86MNtQkRVnKBdglBMQ2IHiuJlMnUmR-0-f4f8cf06ec3878f2e69a671cae20ea17)
可见,截止时Uc≠0,因此当m≥1时,EH模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0009.jpg?sign=1738851454-zg5BuTSxfGbDQXQm3StMszlEjaQI8VOc-0-b7023946829be03709673276b7f14b46)
这里Uc≠0表示,Jm(Uc)=0的第一个根要从Uc≠0的根算起。这样,截止参数Uc或归一化截止频率Vc为m阶贝塞尔函数的根Umm,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0010.jpg?sign=1738851454-LYHuVt3gInMlgb9QdMJea95PNLyewNbz-0-753ce72716f99ba50d369ac56376d10a)
例如,对EH11模,U11=3.832,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0011.jpg?sign=1738851454-EWEw7sc5mvpjXVWcvkj3TMPsL37Olwza-0-70df62a25b35b8110e58bd23b747ea29)
5.3.4 色散曲线
光纤中导模的传播特性与U、V、β等参数有关。U、V决定导模光场的横向分布;β决定导模光场的纵向分布。归一化频率V是与光波的频率、波导尺寸及折射率分布有关的无量纲参数。一旦归一化频率V给定后,则根据本征方程可以确定U、W等参数,并进一步获得纵向传播常数β,也即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0001.jpg?sign=1738851454-r9M6IO685elfRFa6fVrX1rvrgX546aJb-0-8ec5a764f14d0e7cd210507fc17e9d26)
改变V的值可以得到不同的β,从而得到各种模式的β-V关系。另外,波的相速vp和群速vg分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0002.jpg?sign=1738851454-iZ7nCd67JnvCwrZPjeK9rmSezaYoBlkP-0-95469cad2bbaaeec8cab746ec6b9a730)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0003.jpg?sign=1738851454-pGp2me1qMFkpcccD0WBsCBxQnJOQI599-0-5df5c85332caae8c4ffdd6e77798d1db)
如果知道β-V关系,就等效于知道β-ω关系,即色散关系。根据色散关系,可以获得不同模式的群速和相速关系。图5.3-3所示为几个低阶模式的色散曲线。图中横轴表示归一化频率V,纵轴表示归一化相位。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0005.jpg?sign=1738851454-UHRNehAtmKcKjvteoaURMas2mxjOGh5Z-0-e073efdfab3e4e3d85e9df5fd074e7f4)
图5.3-3 几个低阶模式的色散曲线