![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
2.1.4 导数的几何意义
如果函数y=f(x)在x0点处可导,则函数y=f(x)在x0点处的导数为曲线y=f(x)在点M(x0,f(x0))处的切线的斜率,即
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00076002.jpg?sign=1739613104-IwiqTsDu68AUxozGJwSKAmU584AebTgA-0-17646c607baf4b1e66e23b4dc18b0f74)
因此,曲线y=f(x)在点M(x0,f(x0))处的切线的方程为
y-y0=f′(x0)(x-x0).
过曲线y=f(x)的切点M(x0,f(x0)),与切线垂直的直线称为曲线在点M(x0,f(x0))处的法线.如果f′(x0)≠0,曲线y=f(x)在点M(x0,f(x0))处的法线方程为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00076003.jpg?sign=1739613104-Q7sj8rJawdhbzjgSPgbg5mM8qb5cWpXQ-0-d85bfa8fa66453c1470ac857882bf684)
例13 求曲线在点
处的切线和法线的方程.
解 因为,所以曲线
在点
处的切线的斜率
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00076009.jpg?sign=1739613104-9bfhDkzQICLuKwXnNevqiJ0sC5JG8yfe-0-9ed60f3f73af19cb865bb7f929a1a5ba)
故切线的方程为 ;
即 4x+y-4=0.
而法线的斜率 ;
所以法线的方程为 ;
即 2x-8y+15=0.