![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
11.3 名校考研真题详解
解答题
679.证明:若K(x,t)在D=[a≤x≤b,a≤t≤b]上连续,u0(x)在[a,b]上连续,且对任意x∈[a,b],令
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2062.jpg?sign=1739555722-GiI60ztfcgiUiSSNAdgRB1qHcBCpd7bM-0-64246be1b0b3be5aa9012064314bd707)
则函数列{un(x)}在[a,b]上一致收敛.[东北师范大学研]
证明:K(x,t)在闭区域D上连续,从而在D上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2064.jpg?sign=1739555722-Gyt4ANOw3dWCJ4n4QNOKUHlNUHKwCEAr-0-7be01fd872a47cc39a6a2910047c4035)
u0(x)在[a,b]上连续,从而在[a,b]上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2066.jpg?sign=1739555722-5KmGQ8c53LTM3E50Aq7ZUd9B2lLFkknp-0-f074d68eca6322645ab921b874a0ef7d)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2068.jpg?sign=1739555722-lYXHa3bZee8jzVkp1tEkhahTBuudQqUH-0-d3ebc667ff4cc3e243b7df9ae3ab95cd)
由数学归纳法易知,由
及柯西准则知un(x)在[a,b]上一致收敛.
683.证明:在任何有穷区间上一致收敛,而在任何一点都不绝对收敛.[华中科技大学研]
证明:(1)对任何有穷区间,使得对一切x∈I有
①在I上一致收敛;
②对单调减且
,即是一致有界的.
由阿贝尔判别法知在任何有穷区间I上,级数一致收敛.
(2)对由于
收敛,
发散,故
不绝对收敛.
685.设函数f(x)在区间[a,b]上有连续的导函数及a<β<b.对于每一个自然数
定义函数
①
试证:当n→+∞时函数序列在区间[a,β]上一致收敛于f'(x).[中国科学院研]
证明:f'(x)在[a,b]上连续,从而在[a,b]上一致连续,即对对
时
对,取
,则当n>N时,对一切
由①式,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2093.jpg?sign=1739555722-RUXXjVzidn91BWzIv6z7LBAM65C6boJK-0-b31bf530b222f8ee0b80177ecf8de1cb)
所以函数列fn(x)在[a,β]上一致收敛于f'(x).
687.(1)求证:在[0,1]上处处收敛,但非一致收敛;
(2)f(x)在(-∞,+∞)内处处有任意阶导数,级数…
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2096.jpg?sign=1739555722-5Y1O7sxAXYl2cWPxBa8VKUZCUD3ZPGEY-0-578ee928f8de5db64b975894a5a75545)
按二个方向在(-∞,+∞)内一致收敛.试求级数的和函数F(x).[同济大学研]
证明:(1)
对均收敛,所以
收敛,
当x=1时,.亦收敛.
所以在[0,1]上处处收敛.
但
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2103.jpg?sign=1739555722-qrIAgNxzhaYWVXHwOnPeSNMNlBCp6jE8-0-1ff9219f63195b6a5e7ccc6b4d72c328)
所以在[0,1]上非一致收敛.
(2)f(x)有各阶导数,自然各阶导数都连续,该级数逐项求导之后,级数仍是它自己,因而一致收敛,满足逐项求导三条件,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2105.jpg?sign=1739555722-r90Pumo7md3Oau4wOoW4Xme32WVObVrO-0-15d329ae63ea24d1de45e2e9f5d3a7dd)
两边同时积分得(其中c1=ec为常数),令x=0,知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2107.jpg?sign=1739555722-JkZWCPzbUZR2o6jVI5kw31KVPUXfcjK1-0-00441411e113063f2e9d77b6c9985ebe)
722.写出在x=0点展开的Taylor级数的前五项系数,并指出该级数的收敛区域.[北京师范大学研]
解:令,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2110.jpg?sign=1739555722-bdDAn7gYACCFDd39uPytRTtI8mH9FGEQ-0-924a2eb96a6c571085287bd8442c17b0)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2111.jpg?sign=1739555722-P8SwuYjckqYvetupB1BnHcHL3ERcE4u9-0-95dd7d7e23705bfa698a21dfe641540f)
则在x=0点展开的泰勒级数前5项为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2113.jpg?sign=1739555722-RyI9agoATyYyAb8XmI0OPVbt8bPUWbrZ-0-c87d158525c21ba7808455efba58e4a6)
另外,由于在(-∞,+∞)收敛,因此该级数的收敛域为(-∞,+∞).
729.利用数项级数计算积分
[厦门大学研]
解:注意到
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2118.jpg?sign=1739555722-rJgbNA3P1byX75hAZwPwKqeZCYx827Ue-0-16268397621b0fec8afba5aeacff51de)
748.判断级数的收敛性并给出证明.[北京大学研]
解:由于故
而
∴由归结原则
因此由正项级数的比较判别法收敛,从而
也收敛.
1.求的收敛域.[大连理工大学2006研]
解:因为,当x=1时,
不趋于0,所以当
x=1时该级数发散.当x=-1时,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2129.jpg?sign=1739555722-Im3Wpfp20xigMZPW5sGO3tuWxnfObhzu-0-73eed43f5c2d48e3dd746b6c25904013)
为交错级数,所以收敛.故的收敛域为[-1,1).
1.求幂级数的收敛域及和函数.[西安电子科技大学研]
解:由于,所以收敛半径为
,易知其收敛域为
.记
,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2136.jpg?sign=1739555722-qzzTTnajNJRQsAMXIoVQnLg01PyjSEID-0-da55a751e33bf2d626f3ce5ee2064c81)
所以.
1.求幂级数的收敛域及和函数.[华南理工大学2006研]
解:因为,所以R=1.当R=±1时,
均收敛,所以[-1,1]为其收敛域,在[-1,1]内可以逐项求导、逐项求积分,因此
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2141.jpg?sign=1739555722-YILTweGjzZ5RDqzQk21t0LS6R8B7L4p4-0-a20de14f166a4f5266749fa9aa325956)
令,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2143.jpg?sign=1739555722-gkaqWixj623g3CFVTk9rOY9Unm0rmEDV-0-584fe94424c914d2f1e80b8f49dae9d3)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2144.jpg?sign=1739555722-xUo0AFvekg7HFMTKHOrv4VzgpfKPKrIo-0-31856153e5d08e9f62d72c7132974392)
1.求的Mac1aurin级数展开式.[华东师范大学2006研]
解:由于,所以
,从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2148.jpg?sign=1739555722-aqrpAC4cOHr3y2Zy6SnuISovS81rOHVr-0-27f8d7611fa5260a2418178e54ff2548)
1.求在x=0处的幂级数展开式及收敛半径.[中南大学研]
解:由,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2151.jpg?sign=1739555722-PbURzBoiQIpxaeeb5EHR3Ja3J6xQolNk-0-3fa74e878ff02be20871cb3d54963845)
易知其收敛半径.
1.证明:当时,
在(-∞,+∞)上一致收敛.[东北大学研]
证明:易知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2155.jpg?sign=1739555722-yi8nCs7FbT45aqD9727wcUFQUJtRiO9d-0-1687ad6fd4275eaae55891265396ae93)
令,由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2157.jpg?sign=1739555722-AL8N6gTEZlFOFUgKoQn9ELTw1e8CQeEi-0-932b1d847a952acab1a76643a8638ad5)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2158.jpg?sign=1739555722-KPXCGPkU8MucnXXlpuNGA4kSjjeCWr3t-0-af8fe5b6f28eecb24a76112139f0a585)
故
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2159.jpg?sign=1739555722-H6Mi2ctG9n1CWxCThfUA0xu2cFmI47UY-0-0324deba884b3b71125dee0d9107e6c0)
所以在(-∞,+∞)上一致收敛.
1.设f(x)在区间[a,b]上连续,f(x)>0.证明:函数列在[a,b]上一致收敛于1.[华东师范大学研]
证明:因为f(x)在区间[a,b]上连续,所以存在,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2163.jpg?sign=1739555722-7uyEuT7MoZ0oYkV4XLvxCLHQMWn1KaOA-0-c39aebbb8a7b2028e2d2477c1a9b1e0b)
,从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2164.jpg?sign=1739555722-CAReHKOXJ7AjkCw9TXvdK3g6NPBjs9Gx-0-a872a30a4992e7409086a9c829e172dd)
因为,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2167.jpg?sign=1739555722-UDnAF19Z8gpriOSQGKNqEGgcymLcunGZ-0-03dcd0b60407eebf1c0bb9fea9bb9602)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2168.jpg?sign=1739555722-EGXVh6yD9MrxYBvHJ75Ufh98O4at3IOM-0-7354fd0020d5afa9ff3558f3169d79c1)
即函数列在[a,b]上一致收敛于1.
1.设函数un(x)在闭区间[a,b]上连续(n=1,2,3,…),级数在开区间(a,b)内一致收敛.证明:函数
在闭区间[a,b]上一致连续.[北京交通大学2006研、深圳大学2006研]
证明:由于级数在开区间(a,b)内一致收敛,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2174.jpg?sign=1739555722-PJ053vDwru7wL2j0SsCDcmfYqpLPxWhv-0-e97e7f983b95b4569d0ed61375d07095)
由于函数在闭区间[a,b]上连续(n=1,2,3,…),在上式中分别令
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2177.jpg?sign=1739555722-X1r0raFygLJV11grLqoLEmOeNsdbJeR7-0-72cc1e3138b619ed552969180d45491a)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2178.jpg?sign=1739555722-7v7ovQabYwUNUsmeXWRD2wqZ1K5VqhJK-0-588ec07153047ac510378d7abd93e0b3)
即在闭区间[a,b]上一致收敛.故函数
在闭区间[a,b]上一致连续.
1.设函数f(x)在(-∞,+∞)上有任意阶导数,且导数函数列在(-∞,+∞)上一致收敛于
.证明:
[南开大学2006研]
证明:由于在(-∞,+∞)上一致收敛于φ(x),从而
即
在(-∞,+∞)上一致收敛,由一致收敛函数列的可微性质得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2187.jpg?sign=1739555722-qWuE0WrSDAW3PkxkWyyxVqIGCI7ps6xP-0-68f8f386b8b7b73e6223cac0da8983d8)
于是.又因为φ(0)=1,所以C=1,故
1.设,计算积分
[江苏大学2006研]
解:由于,又
收敛,故由Weierstrass判别法知
在
(-∞,+∞)上一致收敛.从而由一致收敛函数项级数的可积性知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2195.jpg?sign=1739555722-SnB2X0oAL6OHQpJpzaTvBofRDkksfSZ0-0-ade2b69ec1b5d5bd3a17fc6d4d857d0e)