![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739554619-RmCkovhYstdeWiAi5TCcO7wVkA1x6kS5-0-68abe63ee7974829eefb4eb892902c13)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739554619-QjGNlagE7iwRgnJ9362D6eAJnJdsOJiq-0-e0fa9c15c45111a957231ab99c17083f)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739554619-l5j2VKuibyApdGvBpc96f33NPnoOWsFb-0-c4ffeac62d39041aacc9bfeddb0fe62a)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739554619-rKCz1RIJ4FA6mzybcmMzgjKniBIsdMN4-0-f80bc8a837b930557df3d607256a9cd2)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739554619-9Amne14mx7u2yu4X2ixKnYJTpuMap7xR-0-8cd59eaec0a3c64a0d953cef5d0be565)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739554619-1RTpCBnMQs4svp3Wdx9WFYMncBVG6s3y-0-27d4d9a0d79c48f6b694fffb9f069644)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739554619-16G3Pacvjo0ccovdU27uP6IPtc8MnvUU-0-1d0938f20870ba1f2e8bee03b1546493)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739554619-t8O7v4Ry9IfzDU1tpUK25ATbaE5OeFdU-0-f57ea1bca97f2b0e255632fab745706b)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739554619-eNsDPhkhSOPxAHzQ7luhwPE9DApvPyPC-0-45b12ff231f944a13e740d74b6a16475)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739554619-XMfttNEumtZo5zXUysABA3eGdxw0difY-0-db7b47a523e0e24e7500a0056fb74e07)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739554619-h8W07i4SvMh3R9OJGSiElmbWsz8cFUo0-0-b9e7316755c828b52e2183825b6056c3)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739554619-nxyyuHx1JmyN6muByyeNMx6BSCx3NoOR-0-dee7f4433314cb1c3cba03caac598cbb)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739554619-gFyEtuRiZr6BmlHa0BhCjbI9nUErEja4-0-e6d7f7da7c97b9a810bcc843ab921098)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739554619-zWnlRuUggE35SHe137yHDUbBa9SRrnD8-0-006faaad00ad3c7674fcde147e0ccd82)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739554619-eK4OIx57lvUIt8aB2mi3dV3r9t34XCBW-0-15ec62fe96cd55004c8f85d2788f7825)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739554619-5CaB4lNbJxTbnP6VxNpcM8DuAYxCwzRv-0-adf04cecf1c8f41c60a00345786a1cde)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739554619-Etd6VLLwVRn1JejiVUG6Gzh1yj5Dfl8e-0-1a05123571367bde54eaffb1af8c34f8)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739554619-lYUa2k4hwTJHdKVelrquAkLtSe3ETUMx-0-63c4f265be2cad1ec29062e24eff130c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739554619-nWpd6UTzGLHxBUqAqIeMJxLavAJt1E3E-0-77b5b18ce3cb85757de8318701e84eae)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739554619-exbOyI2xeoh02zboROfYgUKLT79EgpdR-0-dd13afb99b603c07e0f9a722d55ae1fc)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739554619-UF6gwnb2fTFbuRemOYrh9ZuMmWZJgREe-0-4479cdd856dc179c3657b9b2032a3690)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739554619-uQc32Vwi57qWZsHKFuHLWMeGrDsTggnm-0-dd4e052ff66967e563876208c8d6f3b8)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739554619-hxM3ITJuZZhQutxQmZJez9EwgIHTi96o-0-7e63f18a0bb0acf57519c0be42da6265)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739554619-9a94kyLropm6xkMIwBEGP21U2EKHlAyd-0-fc19296f7332ed53c94b8d4ff5b019d1)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739554619-jnbxUiU8foVvomOXqSAna9frAYgtjaZD-0-b88e4523edfdc31594b3a663d5be2408)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739554619-TxDpUlIJZ76fDMuY3MrooxFCT0aTiN2Q-0-3c547211ace45ea09c87b816ad4afd0e)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739554619-jc43kfa1X5IfBjxFKpOVG7W6HWX1nWhs-0-ebd4ad92b4e6849c95ec4261d9c0426c)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739554619-KM44qxt1lIAUGdcp4DmviPTV9IbK7GU6-0-863e0f3c8a13feffc777d557c56fd1ca)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739554619-ieddisCrrBeOGJufTFlI6smnaO0pE0fh-0-3e722dbf979fa8cc8c0ff988680c01ba)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739554619-jGvmhN1zsM6lSLMUsoFrXuGJSReMmKq3-0-fa2e9144b47da644a2d029b4e900d37b)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739554619-s21I1t8QdsdWHsyXxh6oIZOwDvRAqYEz-0-9ba630d2ee09d806f090c0b92c34c855)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739554619-tTHKm6RQLznkL2a7TqI1h3yqGE6kaNo1-0-51c2c80dbaf39af27d41997e3edb4ba8)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739554619-i2N9ZMxRKMxowvLuqml2rNvzzDgQU400-0-922bfa0fb92c4492964b2edd7c25f740)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739554619-VLnWU0jZVNtNRKqUdQnCRmnEawgkt0ha-0-4c1e0719aba9d9230f1651f86f3a3533)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739554619-JPSeOByqhNNNNUiTmwvQpzLLkPWDJW2v-0-0dce25a0dbad04fa0c435ae11c0ccea4)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)