![金融随机数学基础(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/953/48167953/b_48167953.jpg)
1.6 有界变差函数及Stieltjes积分
1.6.1 有界变差函数
有界变差函数在后面介绍随机积分与伊藤公式时将起到重要的作用,本节首先介绍有界变差函数的定义及性质.
定义1.6.1(有界变差函数) 设f(x)在[a,b]上有定义,将[a,b]分为n段,得一划分T,如果,则称f(x)在[a,b]上是有界变差函数,记
,称其为f(x)在[a,b]上的全变差,其中
表示对所得划分取上确界.为了定义函数f(x)在无界区间[a,+∞)上的全变差,我们要求
,并规定
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/21_10.jpg?sign=1739136984-IJIY1crQNZN65KgfR4MXjuJEz04QwJOk-0-83a5f956dbce838ad98e5ac2e52c819e)
注:连续性对有界变差不起任何作用.
例1.6.1(连续函数不是有界变差函数的例子) 设
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/21_11.jpg?sign=1739136984-XWChGjlhoDGIxeiLze10o0mo4Zg3s8Me-0-88bca940bdea7f2dffb08716018ac05a)
显然f(x)是[0,1]上的连续函数,对[0,1]按下列方法划分:
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/21_12.jpg?sign=1739136984-fzeCo3MDMD1Gm7zqC3KizOn4G7wc7zV6-0-a3bc347f4816557a0e95d773059d5620)
则,故
,从而f(x)不是[0,1]上的有界变差函数.
下面介绍几个有界变差函数的判定定理.
定理1.6.1 设f(x)在[a,b]上每一点均为有限值,且f(x)为单调函数,则f(x)在[a,b]上为有界变差函数.
证明 对[a,b]的任一划分T,不妨设f(x)为单调增加函数,对任一划分T:a=x0<x1<…<xn=b,则有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_01.jpg?sign=1739136984-AeDL755SCnpDRjmW80JKDr8irbYZDFRY-0-94596758fcb6a23f58efcf51a76f85d5)
故,即
=f(b)-f(a)<∞.■
定理1.6.2 如果f(x)在[a,b]上满足如下条件,则f(x)在[a,b]上是有界变差函数:可将[a,b]分为有限个区间[ak,ak+1],其中k=0,1,2,…,m-1,a0=a,…,am=b,使f(x)在每个[ak,ak+1]上单调.
证明 对[a,b]的任一划分T,在T中加入分点得T′必有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_04.jpg?sign=1739136984-MKx0VpapYBWtEm4KcF0tpKBIdj8zHuK0-0-f55f40d94bbea8d6783a4277d4e72699)
将所有ak加入划分T中,设得到的新划分为T′,则有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_05.jpg?sign=1739136984-45C6fteG6xi6CD8Rr7T7Ufh7tKyNth13-0-737f3633ff1c28c81eb413b811cdc64d)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_06.jpg?sign=1739136984-WOnllndhHroLDlni9W9pIoye6jj0fyza-0-060f57594403e3781bcf07d0ed15274b)
从而f(x)是[a,b]上的有界变差函数.■
定理1.6.3 如果f(x)在[a,b]上满足Lipschitz条件,则f(x)在[a,b]上是有界变差函数,且
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_07.jpg?sign=1739136984-nAO2mRQ5G7ZCPBg8LR5Sf0St7A88Gv79-0-e7e63bb05fd0d9832d59f38342a8dabe)
证明 因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_08.jpg?sign=1739136984-dHqh2afwH1bPARhCWfbLe9qInOvGnBDP-0-0f9696fd4296d241b9eb95e548aa8663)
从而<∞.■
定理1.6.4 如果f(x)在[a,b]上可导,且≤L,则f(x)在[a,b]上是有界变差函数.
证明 由
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_11.jpg?sign=1739136984-HIDAytxyU9Rk0MZZbAmzbXYYNYavYSpo-0-7e8978bcda9aad2543cf9a5b44dae3c9)
知结论成立.■
定理1.6.5 如果f(x)在[a,b]上可表示为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_12.jpg?sign=1739136984-dPaS9ndxZv3HptIxjvimvaTXEn8FlyTV-0-a593139ba1d38913ea18b00363e59950)
其中,,则f(x)在[a,b]上是有界变差函数,且
.
证明 因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/22_15.jpg?sign=1739136984-As7o2fI71DG5XMRtCkrBoeF9v4wGlhdR-0-bdb7cafc51b4f2ca0cba872be96a8123)
故,从而结论成立.■
定理1.6.6 任一有界变差函数是有界的.
证明 ∀x∈(a,b),则[a,x]与[x,b]构成[a,b]的一个划分T,从而有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_02.jpg?sign=1739136984-BK9meg3X1flWQieK8924yJytNvq0e1oF-0-16a09129a8ec6d490315239910a809ee)
所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_03.jpg?sign=1739136984-hf1LJPrnlsPudENBODECXbdHPKY77j7D-0-98366514c400eb07c405adfba5d747d6)
定理1.6.7 任意两个有界变差函数的和、差、积仍为有界变差函数.
证明 设h(x)=f(x)+g(x),则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_04.jpg?sign=1739136984-noOMLDocKMxzvR9ZvrjZifH1STH55UvH-0-4f40be3a64cef854a7a35810dca08e5c)
从而
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_05.jpg?sign=1739136984-QnHtJaSv20W20vFrA6K5MWN1p5derlg6-0-20229ecef94a6f023be32d553c6d3237)
令P(x)=f(x)g(x),因为≤M,
≤M,所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_08.jpg?sign=1739136984-9WioPC4npFhfA5o1W294WxuO4SytWqMB-0-6835dec9e09cb05286f7ab6ecaa81a93)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_09.jpg?sign=1739136984-cr3UMnzcnKzqD76E91fLuB83GMSz04Km-0-a3437357fb2c975c5a0de85f46216b6a)
定理1.6.8 设f(x)和g(x)均为有界变差函数,且,则
也是有界变差函数.
证明 只需证明是有界变差函数即可,因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/23_13.jpg?sign=1739136984-TQPHy7l5AOEyJPEetzJ5rw3ns7wlDfzJ-0-f0b1f695785082c5c9faa4b7336ef10e)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_01.jpg?sign=1739136984-1w83xsFIKzQv7zw4gPTDNxgYOpTxquFc-0-650f7233e0560d1dfcf72f3394542d43)
从而是[a,b]上的有界变差函数.■
定理1.6.9 若f(x)在[a,c],[c,b]上均为有界变差函数,则f(x)在[a,b]上也为有界变差函数,且.
证明 对[a,b]的任一点c,如果c不是分点,则将c加入使其成为分点,那么
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_04.jpg?sign=1739136984-4ent2Yt37VGxQLUHBPp8gIEnuZbyIAcs-0-f9c7de9d0394e323ce4a05126cbe6ac1)
故<∞.
另外,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_06.jpg?sign=1739136984-EiPbMBu3rdE0wu3T2qFdTlGoo2KDi8FM-0-fabbb9f5af3579c7b1b6457ad28312b6)
故,从而
).■
定理1.6.10 如果f(x)为[a,b]上的有界变差函数,则是[a,b]上的增函数.
证明 因为对任意x1<x2,,从而
.■
定理1.6.11 f(x)在[a,b]上为有界变差函数⇔∃有界单调递增函数F(x),使得∀x′<x″,x′,x″∈[a,b],均有≤F(x″)-F(x′).称F(x)为强函数.
证明 “⇒”,若f(x)是有界变差函数,令,则g(x)是有界增函数.则
.
“⇐”,由=F(b)-F(a)知,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/24_16.jpg?sign=1739136984-nRywDGC48Y9fQMQHNZBglp5j05vhFqHF-0-6d85c3d181318e3446f8fcb4fdd9918f)
从而f(x)是[a,b]上的有限变差函数. ■
定理1.6.12 f(x)是[a,b]上的有界变差函数⇔f(x)能表示为两个有界增函数的差,即存在两个有界增函数g(x)和h(x),使得f(x)=g(x)-h(x).
证明 “⇒”,设强函数为F(x),令g(x)=F(x),h(x)=F(x)-f(x).则f(x)=g(x)-h(x),g(x)是有界增函数.往证h(x)也是增函数.∀x1<x2,因为
h(x2)-h(x1)=g(x2)-f(x2)-g(x1)+f(x1)
=[F(x2)-F(x1)]-[f(x2)-f(x1)]≥0
故h(x)是有界增函数.
“⇐”,令F(x)=g(x)+h(x),则F(x)是有界增函数,因为∀x1<x2,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/25_01.jpg?sign=1739136984-51BDG8flndBYQ9ttASrik1yFIqDsAYtx-0-45837f632536ae2727468ab20dafd4b7)
故F(x)是强函数,从而f(x)是有界变差函数.■
定理1.6.13[a,b]上的有界变差函数f(x)在[a,b]中任一点都有左极限与右极限.
证明 因为f(x)=h(x)-g(x),由于h(x),g(x)都是单调函数,故h(x),g(x)的左、右极限都存在,从而f(x)在[a,b]中任一点的左、右极限都存在. ■
下列结论的证明是容易的,请读者自己完成.
定理1.6.14 若f(x)是[a,b]上的有界变差函数,且f(x)在x0上连续,则g(x)=也在x0上连续.
定理1.6.15 若f(x)是[a,b]上的有界变差函数,且f(x)在[a,b]上连续,则存在两个连续增函数h(x),g(x),使得f(x)=g(x)-h(x).
1.6.2 Stieltjes积分
下面我们介绍Stieltjes积分,它是由荷兰数学家Stieltjes建立的一种积分,故称为Stieltjes积分.它是Riemann(黎曼)积分的一种推广,在Riemann积分中,将dx推广为dg(x),且g(x)不一定可微,就成了Stieltjes积分.本节我们将介绍Stieltjes积分的定义及性质,在随机变量的数学期望、随机积分等内容中我们将大量使用Stieltjes积分的相关知识.
定义1.6.2(Stieltjes积分) 设f(x),g(x)是闭区间[a,b]上两个有界函数,任给[a,b]一个划分
T:a=x0<x1<…<xn=b
和任意取点ζi∈[xi-1,xi],i=1,2,…,n,作和,记
λ(T)=max{Δx1,Δx2,…,Δxn}
若存在,且极限I与T的划分及ζi的选取无关,则称I为f(x)关于g(x)在[a,b]上的Stieltjes积分,记为
.
注:dg(x)不是g(x)的微分,g(x)可能不可微.
有时为了区别Riemann积分,将Stieltjes积分记为.
下面我们讨论Stieltjes积分的可积性.
用Mk与mk分别表示f(x)在[xk-1,xk]上的上确界与下确界.记
s(T)=∑mkΔg(xk),S(T)=∑MkΔg(xk)
分别为划分T对应的大和与小和.
当g(x)为[a,b]上的增函数时,s(T)和S(T)与黎曼积分的达布大和与达布小和有完全一样的结论.
定理1.6.16 若g(x)为[a,b]上的增函数,f(x)在[a,b]上有界,则存在的充要条件是对任一划分T,有
=0,其中ωk=Mk-mk.
定理1.6.17 若f(x)在[a,b]上连续,g(x)是[a,b]上的有界变差函数,则存在.进一步,设g(x)=g1(x)-g2(x),其中,g1(x),g2(x)为增函数,则有
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_04.jpg?sign=1739136984-2X9Si00qCFX5VZiSHNt38UNvpWPw5LHk-0-d73616b1748309da7691361f5dca7377)
证明 因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_05.jpg?sign=1739136984-jLuENSYVy7mlWEwMDq0IZBU4G8RrA0mv-0-98513d4faefaf8efd8d570349a784554)
定理1.6.18 若函数存在,g(x)在[a,b]上满足Lipschitz条件,即∀a≤
,有
,其中L>0为常数,则
存在.
证明 首先,当g既满足Lipschitz条件又是增函数时,对任一划分T,有Δg(xi)≤LΔxi,从而
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_10.jpg?sign=1739136984-GoEMWAqRHzBIRNh33YF4iYjH87wqFfSc-0-94db9b463458fe1ab4ebb16d67dc71bf)
故有=0,从而
存在.
其次,当g(x)仅满足Lipschitz条件时,令,因g1(x)既是增函数又满足Lipschitz条件,故
存在.又因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/26_15.jpg?sign=1739136984-wYEHcbGrmZ9khcKjc9TR7g9SvAZHQLYJ-0-caf092786bc8adc520737141eac6f392)
故g2(x)也满足Lipschitz条件,当x1≤x2时,
g2(x2)-g2(x1)=Lx2-Lx1+g(x1)-g(x2)
=L(x2-x1)-[g(x2)-g(x1)]≥0
故g2(x)也是增函数,则有存在,从而
存在.■
下面介绍Stieltjes积分的主要性质.
定理1.6.19 (1)设g(x)在[a,b]上处处有限,则=g(b)-g(a);
(2)如果均存在,则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_05.jpg?sign=1739136984-AVuOD90reMOZVMt5otLMGdqTglo6tDsj-0-7f60d23879270f3816c770a326e4ef84)
(3)如果均存在,则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_07.jpg?sign=1739136984-sUCjWGcS7DOtCNh6tKH7lKfCewT98Gv8-0-39ed3ee178720fa47eff70ade3b5ccd1)
(4);
(5)若a<c<b,且都存在,则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_10.jpg?sign=1739136984-1LhvUHqjKZ0UVXwFnrvft1qJgDT7QrPy-0-2fa75c786a054d9e22b7b769acc78643)
注:若a<c<b,则由存在,不能推出
存在.
例如,设,显然
=0,
=0(因为Δg(xi)=0).但
不存在,事实上,对[-1,1]的任一划分,设0不是分点,且0∈(xk-1,xk),此时若取ζk=0,则
=0,若另取ζk>0,则
=f(ζk)=1,故不可积.
定理1.6.20 若存在,f(x),g(x)是[a,b]上的有界函数,则
也存在,且
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/27_21.jpg?sign=1739136984-dYPzyq1mCjstBTARPIHYKc9wWmpd3te3-0-79d53c77b59751aceeac14e23c845b19)
证明 对[a,b]的任一个划分
T:a=x0<x1<…<xn=b
由
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_01.jpg?sign=1739136984-jkTUU9dJmBb4vXfMJrUrRM8OcZsxq4y4-0-96db43819215547a81abe85e6bfbd103)
考虑对[a,b]作分割T′:a≤ζ1≤ζ2≤…≤ζn≤b,即得新划分.显然有xi∈[ζi,ζi+1]=[ηi,ηi+1],i=1,2,…,n-1,且当λ(T)=max(xi-xi-1)→0时,λ(T′)≤2λ(T)→0.故由存在知,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_03.jpg?sign=1739136984-gBiEOzHPM27wq58XjVprXkEI7Ic6abAn-0-85af7754beb49783b92694d40b666e59)
即
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_04.jpg?sign=1739136984-bf93zTnkNUrqFhtQN9s2kr1W0jKXAdkR-0-fe42158651d8aa7053384f1d632d352b)
所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_05.jpg?sign=1739136984-gHeYBNLOFbTabXK0Yg31dSdkqSzM0HZu-0-648e6e587a822145d074fdc041efccaf)
定理1.6.21 若f在[a,b]上Riemann可积,且存在[a,b]上Riemann可积函数φ(x),使g(x)=,则
.
证明 先证可积.由φ(x)可积知
≤L,从而
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_10.jpg?sign=1739136984-jJRYz9YhGFlPd9Sl3sjuqUgiNrpqCUep-0-639a6102089705eae8d924c3e222a597)
从而可积.下面证明
.
当φ(x)为正时,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/28_13.jpg?sign=1739136984-QaachReZxVwIeARVNT6HdFbQBaokJsOZ-0-3ede86677362efaf26c0eee0d3bffbfe)
又因为
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_01.jpg?sign=1739136984-SOETQ5i2Sx511lYODMEPKoV6hb6D9Uru-0-10399ff2237cff76cb72964e73649f33)
所以
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_02.jpg?sign=1739136984-XP9QORSovplnwK3C6p39bv1ltvO7GEbP-0-e7f460372f355f0b7d5702aba0010a20)
故
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_03.jpg?sign=1739136984-fqwsqrwP7KKBERrtKj9cwIExSrDZEUkA-0-5b7253672189b5c7e99a2c71d455b338)
当φ为一般函数时,令,则φ1(t),φ2(t)均非负,且
,
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_06.jpg?sign=1739136984-FCnrr0iFGERS1STOh7TwtEIueOKfhSMI-0-c77941b77b1b9536a8d7a8fe2ddbf1d5)
证毕. ■
下面两个定理也是非常有用的,我们省去它们的证明.
定理1.6.22(中值定理) 设f(x)在[a,b]上有界,m≤f(x)≤M,g(x)在[a,b]上单调增加,且存在,则存在μ∈[m,M],使
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_08.jpg?sign=1739136984-NFF1gxwpAemSMX08ErspUKvOWpibqK7J-0-570d4c914e348a319d496d67628a0c1a)
定理1.6.23 (1)设fn(x)在[a,b]上连续,且fn(x)在[a,b]上一致收敛于f(x),g(x)在[a,b]上是有界变差函数,则.
(2)设f(x)在[a,b]上连续,gn(x)是一致有界变差的,即
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_10.jpg?sign=1739136984-7VwKTjJUvoTiCRhnYESVRnXpOW6QMntW-0-5d2e151a2a9e1ea98a8daf86f50ab357)
且
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_11.jpg?sign=1739136984-3k3jsEVF9B2W6dy8QApbt0AszhxTpXtB-0-2586a5acebbe48e1644ceac23e79da00)
则
![](https://epubservercos.yuewen.com/2231AC/27672529104356906/epubprivate/OEBPS/Images/29_12.jpg?sign=1739136984-qBIOKiIIrAih4DwMBKprXg67t9E8l0bY-0-c0a17f909b5125d580e8bcabe34e131c)