![线性代数(全国中医药行业高等教育“十四五”规划教材)](https://wfqqreader-1252317822.image.myqcloud.com/cover/959/50489959/b_50489959.jpg)
1.3.2 余子式与代数余子式
一般地,低阶行列式比高阶行列式较易于计算,在把高阶行列式变成低阶行列式时,要把行列式按一行(列)展开,这样要用到代数余子式的概念.
由三阶行列式的对角线法则,得到
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_48.jpg?sign=1739339824-7lXM3b3O8PPy00Z88Euh26Wq02I1A50W-0-08efa07af5a701f1d7e96775f430f51b)
=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33-a11a23a32
=a11(a22a33-a23a32)-a12(a21a33-a23a31)+a13(a21a32-a22a31)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_49.jpg?sign=1739339824-387wIePr3glzlu4gXGNnyA7Hnl0F1OhN-0-22dabf349c7e00e98fdd8cd225182856)
(1-13)
在式1-13中,二阶行列式
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_50.jpg?sign=1739339824-c969aAevxTA3WjL144W7ZQvgNdKaR8R7-0-de89c6088231fb21bb5e08caa821fbcf)
就是在原行列式中将元素a11所在的行与列划去后,剩下的元素按原来的相对位置组成的低一阶的行列式.这样的行列式称为a11的余子式,记为M11.又如,a22,a32的余子式分别为
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_51.jpg?sign=1739339824-eOOgO9lM42CKVVLtC8E3gSMchYjjGxzP-0-856aa816872bee418149a3fe0368b9dd)
定义1 在n阶行列式中,划去元素aij所在的第i行和第j列后,余下的n-1阶行列式称为元素aij的余子式,记为Mij.元素aij的余子式Mij乘以(-1)i+j后得到的式子,称为aij的代数余子式,记为Aij,即
Aij=(-1)i+jMij
(1-14)
如,在上面的三阶行列式中,第一行元素的代数余子式为
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_52.jpg?sign=1739339824-EINPeZC3IsWehswtlQvdes1OZE4QEQO2-0-9e21ef8fe79dba0884fad75f95a29576)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_53.jpg?sign=1739339824-7P8cbttGZkOtLbB6mT8bz05YyEMzDSiZ-0-d33f268a2a2833ec6024524e0fc0081e)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_54.jpg?sign=1739339824-fUtpmqT1KMa06yGejozk7DIZqvOAbReY-0-e806f4b064892a4246421ffe37b7c6aa)
这样,式1-13可以写成第一行元素与相应代数余子式乘积之和,即
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_55.jpg?sign=1739339824-yKZFk542ekfBkrEiuH7DKMlqFx2CXgZf-0-6b4bf5736a78f78372096fababe80b58)
一般地,有如下的行列式展开定理.
定理1 n阶行列式等于其任一行(列)所有元素与相应代数余子式的乘积之和,即
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_56.jpg?sign=1739339824-d3uNErqMt7tRyPtPkU4O4gXFeNatQYcg-0-bd4b1c13158827c16dcdde227e568edc)
(1-15)
其中,等号上方写(i),表示n阶行列式按第i行展开.
证明 (1)先证最特殊的情况,即第一行只有a11≠0,而其余元素均为零的情况.
由行列式的定义知,每一项都必须含有第一行的一个元素,但第一行只有a11≠0,所以一般项可写成
(-1)τ(1j2j3…jn)a11a2j2…anjn=a11[(-1)τ(j2j3…jn)a2j2…anjn]
上式等号右边括号内的式子正是M11的一般项,所以D=a11M11=a11(-1)1+1M11=a11A11.
(2)再证行列式D中第i行第j列元素aij≠0,其余元素均为零的情况.
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_57.jpg?sign=1739339824-hS5W7dObO7Vhm592WjzrLUIIAe3maviU-0-e695bcba0643671346dc9076473667c1)
先进行交换,将D中的第i行,经过i-1次交换到第1行;再进行列的交换,经过j-1次交换到第1列,共经过了i+j-2次交换,得行列式
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_58.jpg?sign=1739339824-rehhGh9qcS2KOlmlsA8UlLYNP4FU8zCx-0-3cf17bba1c842505ba5d7032fae95054)
(3)最后证一般情形,可把行列式D写成如下形式
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_59.jpg?sign=1739339824-LD37JBiWFvD1XqQF60hQ1SnUszHXuboJ-0-051bf869f4bebd2423a199750422f2df)
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_60.jpg?sign=1739339824-5hyOqPx50wM6fa8koFMV7iYrRC60DDgf-0-5f80942aff5798d5903e1058a1e8e13d)
=ai1Ai1+ai2Ai2+…+ainAin
定理得证.
例3 分别按第一行与第二列展开行列式.
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_61.jpg?sign=1739339824-0H1JcC0AkVsynm0Es3WeIjpqUvlNYyGF-0-5cab71819aba2c9af4c62b4655f67e0a)
解 ①按第一行展开,得到
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_62.jpg?sign=1739339824-d0bhJ3vJVDhBVd6vblaBJzfB0K6FiOPP-0-155752b6b1c201a728a5d838f77ada43)
②按第二列展开
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_63.jpg?sign=1739339824-N5rOhxAG5cNCwuKfYTQpbutG9MWRZPmV-0-95a635ea82c0323c10c8e8bb287cb517)
定理2 n阶行列式D=det(aij)的某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
ai1Aj1+ai2Aj2+…+ainAjn=0 (i≠j)
a1iA1j+a2iA2j+…+aniAnj=0 (i≠j)
(1-16)
证明 将行列式D按第j行展开有
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_64.jpg?sign=1739339824-BNe7sW1WF9hxlrCBJsL9QLI0ZFSOs6wt-0-c3c874f81c93ab19c1a230de8b9da592)
把上式中的ajk换成aik(k=1,2,…n),得到
![](https://epubservercos.yuewen.com/0D6C64/29738146003799206/epubprivate/OEBPS/Images/txt001_65.jpg?sign=1739339824-kOXL7cZF1nvnBEeCwpsQHque4CbVrcA5-0-792202b8390c6f390825cc90baf07255)
上式右端当i≠j时,有两行对应元素相同,其行列式的值为零,所以得
ai1Aj1+ai2Aj2+…+ainAjn=0
同理,将行列式D中第i列的元素换为第j列(i≠j)的对应元素,可证D按列展开的结论.