![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.2 参数方程表达举例
现在讨论参数方程表示下平面曲线的变分问题.
假设光滑的平面曲线的参数方程表示如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21445.jpg?sign=1739191810-YzRYJh1e2w1plzQIo3l8SBqGqdzrxHLD-0-e48a417d50665b65cd644ca08a10bd65)
这条曲线L是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21447.jpg?sign=1739191810-2Offw5RC2cDdvTIc84Zp1X1KVuEwS84k-0-586be8de89dced73dec1c0637c848342)
的“极小点”.为讨论方便起见,假设泛函定义在连续可导函数集合(C1[α, β])2=(C1[α, β])×(C1[α, β])上,集合的元素满足边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21449.jpg?sign=1739191810-9PxZn4klDz3dapBbZXe2hrr58C8jxDO5-0-9e6be4f25ed734960ab1c7ef3d38549e)
与直角坐标形式下类似,选取齐次边界条件的摄动函数(组)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21451.jpg?sign=1739191810-BCHzBEleBQ6WOpE3uCmGU9GthMq4bmbF-0-c32848451c7f5d5f056466576f79573b)
假设L就是极小值函数曲线,那么摄动后的展开式如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21453.jpg?sign=1739191810-yfWsZTDS8Q1oXt5GzKh9S7fooGNOX0b8-0-395ff61548c7be5acc7ca3d32b00bf65)
得到泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21455.jpg?sign=1739191810-NFBzZThGnj7aklIWSitxtaYvxHhmciX0-0-d7839ae7563dc7505e57a44de4715db0)
当ε=0时极小点也是驻点,曲线L满足泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21458.jpg?sign=1739191810-wAJnc8Oad92BlGuZ4CxXQG19wMGe5ngC-0-e833b6ba2e76f660454991ab33e17542)
这里利用了摄动向量{φ1,ψ1}的齐次边界条件.再利用摄动向量的任意性和定理1.5即可得到泛函式(2-22)的驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21460.jpg?sign=1739191810-cNpCh4maOv6GgXAb04NnvfSPRCXmyqw2-0-49269fd169c0f715f9c66db0a839a45a)
这正是曲线在参数方程表示下泛函式(2-22)对应的欧拉-拉格朗日方程.
例2.2 等周问题的解满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21461.jpg?sign=1739191810-E1xcX8OwuaIbuNlbDPSxsdee8ZatiCmo-0-995c1785f5510592ae2489d304bcfeab)
解 回看等周问题的带有约束的泛函式(2-7)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21462.jpg?sign=1739191810-jWO499RIww7j9bB21rnnis9A94vTZe6r-0-423a977a159bdce6088a7b4c292d0971)
这里的
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21464.jpg?sign=1739191810-PHKUpdRzq56WmpTBMvJ4uu0DTlGRrChs-0-66b6edb6fb2eabfe7fec68c3f0ae4a89)
其相应的欧拉-拉格朗日方程变成
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21465.jpg?sign=1739191810-yFQoAGSnKITWRAM5WqIVmlIMG2hYBJa4-0-63823871c8d3b8c3b18df78db46cbfb3)
和
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21466.jpg?sign=1739191810-W3QC1A0jZALWdWt8ZCKEXPCNjenULdr0-0-48bd29b62fb4c4631999a19811e7f8d7)
对两个方程进行首次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21469.jpg?sign=1739191810-4yutcvxS5GkGhvmI2OFo8iTjacuK8iqC-0-0adb1a82a830d48e58ca17e6b680954b)
分别将上面两式乘以φ′和ψ′,再相加得到
φ φ′-C1φ′+ψ ψ′-C2ψ=0
再次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21519.jpg?sign=1739191810-xcqRQ6ikpPYMOSZfERGPrATTj1ytvy7X-0-e79465a981e7a6eb6dc0f63c78e7db9a)
因此,可得出等周问题的必要解是圆周,也就是式(2-24).式(2-26)中的常数C1、C2和C可以依据边界条件和围成区域的曲线长度确定,这里略去讨论.