![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.3 与曲面相关的变分问题举例
这一节转向讨论空间的最优曲面的变分问题.
对于直角坐标表示下的光滑曲面
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21521.jpg?sign=1739192595-OH4wqavZ2arZG7vhIJnE5hDLFsqsyjs7-0-b2bfe1c1a6ab3821f6b3ff67dcfda4c5)
其中的定义域Ω是一个有界闭区域,其边界为光滑曲线∂Ω.考虑曲面满足如下固定边界条件:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21523.jpg?sign=1739192595-FnaanHipDKc5DitzAnhHw5Kb4LR0Xo96-0-87b902f3aad09bbceaad0c9e81cdd9ae)
对应于Σ的边界曲线为
Γ:(x, y, ϕ(x, y)),(x, y)∈∂Ω
如图2-4所示,其中w=z=f(P),P(x, y)∈Ω.
对应这类二维问题的泛函为
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21525.jpg?sign=1739192595-C6KRxEpeqyLRGZ9Di1Zfr9aQLqgnOjGP-0-5f7f8df8c2292797f63c3286df1dbfca)
这里的▽是哈密顿(Hamilton)算子,▽z={zx, zy}.
函数F(P, z,▽z)充分光滑,可以关于函数项展开
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21527.jpg?sign=1739192595-VRxeJrrtZMRXjGoahnlbUeVkAxPxlO1p-0-619ea4d5d69f26da62c73320b3ed5fbb)
这里的摄动函数z1=z1(x, y)具有连续的偏导数,而且z1|∂Ω=0,这样,泛函的极值点落在ε=0处:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21529.jpg?sign=1739192595-RxynHMKN4VjUkhvbqvHfuXXQsviHJN0C-0-c2292e3405a430f26926ed7c60b57c47)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21535.jpg?sign=1739192595-D6uFsS49jKUvBXc14WkSAV0fB6SeBylr-0-77d8e71e3f9f14ee01ad54185efb1a9f)
式中,n是边界∂Ω的外法线单位向量,dl为边界∂Ω的弧微分.且有
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21537.jpg?sign=1739192595-2DGWDP0pEWYEg001n5K1glDwFOY7gzSa-0-1571b402a4b7c2dc011f637a981ea12c)
结合边界条件z1|∂Ω=0,再利用z1的任意性和定理1.6,从上式就可以得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21539.jpg?sign=1739192595-SqMhEC3Y5hBIbN1dXgcBeoYxe9QqYqqK-0-2f08425d79331f892ee87b59a8b05d29)
此即该问题的欧拉-拉格朗日方程.
例2.3 在约束条件式(2-28)下的泛函,式(2-29)的极小问题,即
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21540.jpg?sign=1739192595-jpqWzBRa35B2AebOsfBZD8Ngkmidc0aJ-0-03a99e8dddd2ae81deb5542499365286)
的解z满足极小函数曲面方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21542.jpg?sign=1739192595-SBoPprF5gol9X1PECi1yTBFaipcn9EAO-0-951803bf566798b11d3b55a0d4ba68e3)
解 泛函L对应式(2-29)的能量函数
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21544.jpg?sign=1739192595-f9YhakaVLiYBbOUVTq8hiQHDFxu7d2z0-0-0853300c8272482baf44cc2c384ee40a)
这里的F仅依赖于.利用式(2-30)得出极小曲面应该满足的欧拉-拉格朗日方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21546.jpg?sign=1739192595-Ix5zkZbh35LCtyc2wnU8hcEjDflolAYP-0-a4855c972a34794266f94c2c4bfea75b)
所以,极小曲面z=z(x, y)满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21552.jpg?sign=1739192595-duGReh11rimZr7XUn0hqHOJH2ctntJ7U-0-253b2c3572256838407bf62b8567f73f)
和边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P39_21553.jpg?sign=1739192595-QXCIMEcTWw4izCRAxaZsjYRAdXMG4VI6-0-07e7a3c9b03e61d21e515d421c3e52de)
这里的.
以上三个例子是比较典型的经典变分问题,各有特点.通过以上详细分析,得出了曲线或曲面所要满足的方程和定解问题,余下的工作是针对具体的条件进行定解问题求解.